为了处理变异长度的长视频,先前的作品提取了多模式功能并将其融合以预测学生的参与强度。在本文中,我们在视频变压器(CAVT)中提出了一个新的端到端方法类的关注,该方法涉及一个向量来处理类嵌入并均匀地对变异长的视频和固定的端到端学习 - 长度短视频。此外,为了解决缺乏足够的样本,我们提出了一种二进制代表采样方法(BOR)来添加每个视频的多个视频序列以增强训练集。BORS+CAVT不仅可以在EMOTIW-EP数据集上实现最先进的MSE(0.0495),而且还可以在Daisee数据集上获得最新的MSE(0.0377)。代码和模型将在https://github.com/mountainai/cavt上公开提供。
translated by 谷歌翻译
Scene understanding is an essential and challenging task in computer vision. To provide the visually fundamental graphical structure of an image, the scene graph has received increased attention due to its powerful semantic representation. However, it is difficult to draw a proper scene graph for image retrieval, image generation, and multi-modal applications. The conventional scene graph annotation interface is not easy to use in image annotations, and the automatic scene graph generation approaches using deep neural networks are prone to generate redundant content while disregarding details. In this work, we propose SGDraw, a scene graph drawing interface using object-oriented scene graph representation to help users draw and edit scene graphs interactively. For the proposed object-oriented representation, we consider the objects, attributes, and relationships of objects as a structural unit. SGDraw provides a web-based scene graph annotation and generation tool for scene understanding applications. To verify the effectiveness of the proposed interface, we conducted a comparison study with the conventional tool and the user experience study. The results show that SGDraw can help generate scene graphs with richer details and describe the images more accurately than traditional bounding box annotations. We believe the proposed SGDraw can be useful in various vision tasks, such as image retrieval and generation.
translated by 谷歌翻译
现代神经影像学技术,例如扩散张量成像(DTI)和功能性磁共振成像(fMRI),使我们能够将人脑建模为脑网络或连接组。捕获大脑网络的结构信息和分层模式对于理解大脑功能和疾病状态至关重要。最近,图形神经网络(GNN)的有前途的网络表示能力促使许多基于GNN的方法用于脑网络分析。具体而言,这些方法应用功能聚合和全局池来将大脑网络实例转换为有意义的低维表示,用于下游大脑网络分析任务。但是,现有的基于GNN的方法通常忽略了不同受试者的大脑网络可能需要各种聚合迭代,并将GNN与固定数量的层一起学习所有大脑网络。因此,如何完全释放GNN促进大脑网络分析的潜力仍然是不平凡的。为了解决这个问题,我们提出了一个新颖的大脑网络表示框架,即BN-GNN,该框架搜索每个大脑网络的最佳GNN体系结构。具体而言,BN-GNN使用深度加固学习(DRL)来训练元派利,以自动确定给定脑网络所需的最佳特征聚合数(反映在GNN层的数量中)。在八个现实世界大脑网络数据集上进行的广泛实验表明,我们提出的BN-GNN提高了传统GNN在不同大脑网络分析任务上的性能。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译